
Computer Simulations in
Solid-State NMR. II.
Implementations for Static
and Rotating Samples
MATTIAS EDÉN

Physical Chemistry Division, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

ABSTRACT: In the first article in this series (Concepts Magn Reson Part A 17A:117–154,
2003), we outlined a theoretical framework for calculating solid-state NMR time-domain
signals and frequency-domain spectra. This article explains how the theory may be imple-
mented on a computer for simulating NMR signals from a single crystal in a static and
rotating sample. The general building blocks of a computer program for numerically
calculating NMR signals are discussed. Computer algorithms for carrying out the simulations are
presented as flowcharts and implemented in C/C�� code. © 2003 Wiley Periodicals, Inc.

Concepts Magn Reson Part A 18A: 1–23, 2003

KEY WORDS: solid-state NMR; numerical simulation; computer algorithm; static solids;
magic-angle-spinning; dynamically inhomogeneous Hamiltonian; spherical tensor

INTRODUCTION

In Ref. (1), henceforth referred to as “Part I,” we gave
a theoretical formalism for how to calculate NMR
time-domain signals and frequency-domain spectra in
solid-state NMR. This article, which builds directly
on Part I, discusses in more detail the various building
blocks of a numerical simulation program and out-
lines how such a program may be written for simula-
tion of NMR spectra of a single molecular orientation,

i.e., a single crystal. The NMR problems treated here
conform to so-called dynamically inhomogeneous
cases as defined by Maricq and Waugh (2). As ex-
plained in Part I, these correspond to evolution of the
nuclear spins under either a time-independent Hamil-
tonian or a time-dependent Hamiltonian that com-
mutes with itself at all times. This applies, for in-
stance, to isolated spins and heteronuclear spin
systems under MAS conditions.

The algorithms are summarized as flowcharts that
are suitable for implementation in most programming
languages, such as FORTRAN (3), C (4, 5), C��
(6), and MATLAB (7). Some explicit examples of
computer code in C/C�� are provided. The aim of
this article is not to teach computer programming but
merely to guide those already acquainted with ele-
mentary programming toward converting the theoret-
ical NMR formalism introduced in Part I into a work-

Received 5 October 2001; revised 22 October 2002;
accepted 20 November 2002
Correspondence to: M. Edén; E-mail: mattias@physc.su.se

Concepts in Magnetic Resonance Part A, Vol. 18A(1) 1–23 (2003)

Published online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/cmr.a.10064
© 2003 Wiley Periodicals, Inc.

1

ing computer code, using well-established NMR
simulation techniques. These are presented to aid gen-
eralization to more complex problems, as one of the
purposes of this article is to help guide the reader
toward articles that discuss implementations of more
advanced and efficient simulations strategies.

This article is organized as follows: The next section
summarizes the most important results and equations of
Part I. The third section describes general aspects of the
computer code given in the remainder of the article. As
outlined in Part I, the three main parts of a numerical
simulation program are (i) initialization of tensors and
construction of matrices for the spin operators, (ii) the
spin dynamics calculation, leading to the NMR time-
domain signal, and (iii) postprocessing of the calculated
data. Parts (i–iii) are discussed in detail. Finally, the last
section briefly discusses extensions of the routines given
here to more complicated spin dynamics calculations.
We stress that this article deals only with calculation of
the NMR response from a single molecular orientation.
Simulations of time-domain signals and frequency-do-
main spectra of powders require powder averaging (8–
13). This stage of the simulation will be included in an
upcoming article, where the fragments of the computer
code presented here will be merged together to form the
final simulation programs.

SUMMARY OF PART I

Here we summarize the most important aspects of the
theory that is to be implemented numerically.

The spin density operator �̂ represents the state of
an ensemble of equivalent nuclear spin systems. At
thermal equilibrium in a strong magnetic field, the
density operator is proportional to Îz, written for brev-
ity (14–19)

�̂eq � Îz [1]

To obtain a detectable NMR signal, it is necessary to
create single-quantum coherences (1QC) by applying
a radio-frequency pulse to the spin ensemble. Next,
the signal acquisition starts at time point t � 0, with
the density operator �̂(0) taken to be proportional to
the spin operator Îx.

The NMR time signal corresponds to the expecta-
tion value of an observable operator Q̂, and may be
calculated by forming the following trace (14–19):

s�t� � �Q̂��t� � Tr��̂�t�Q̂	 [2]

In the case of quadrature detection (which applies to
all modern spectrometers), Q̂ is proportional to Î�

(14–19), which corresponds to detection of
1QC.
The density operator �̂(t) evolves in time according to

�̂�t� � Û�t, t0��̂�t0�Û�t, t0�
† [3]

The operator Û(t, t0) is called the propagator, and
transforms the density operator from the time point t0

to t. It is related to the Hamiltonian through the
Schrödinger equation:

d

dt
Û�t, t0� �
iĤ�t�Û�t, t0� [4]

Equations [2], [3], and [4] are the fundamental
expressions for calculating the time-domain signal
and frequency-domain spectrum from any NMR ex-
periment. Solving the Schrödinger equation provides
the major challenge as it lacks an analytic solution in
general and is the main reason why numerical simu-
lation programs are needed. However, in Part I we
confined the discussion to so-called dynamically in-
homogeneous problems, where the spin Hamiltonian
is either time independent or time periodic and self-
commuting at all time points. In these cases, Eq. [4]
may be solved analytically, and we showed that the
NMR time-domain signal then has the following gen-
eral form:

s�t� � �
u,v�1

�

�u��̂�0��v��v�Q̂�u�exp�i�uv�t, 0�	 [5]

The expression for the dynamic phase �uv(t, 0) dic-
tates the form of s(t) and hence also the appearance of
the NMR spectrum.

In the case of a time-independent Hamiltonian,
�uv(t, 0) was demonstrated to be given by the prod-
uct �uvt, with the frequency �uv obtained as the
difference between the Hamiltonian eigenvalues �v

and �u:

�uv � �v � �u [6]

At the start of signal acquisition, defined as t0 � 0,
this gives the following expression for the dynamic
phase:

�uv�t, 0� � �uv t [7]

and Eq. [5] casts as

2 EDÉN

s�t� � �
u,v�1

�

auvexp�i�uv t	 [8]

The amplitude auv is a product of matrix elements of
the initial density operator and observable, both ex-
pressed in the eigenbasis of the Hamiltonian:

auv � �u��̂�0��v��v�Q̂�u� [9]

Upon Fourier transformation of Eq. [8], the frequency-
domain spectrum from a spin system evolving under
a time-independent Hamiltonian is obtained in the
following form:

S��� � �
u,v�1

�

auv
��, �uv� [10]

It is represented by a set of �2 delta functions, each
representing a spectral peak with amplitude auv posi-
tioned at the frequency coordinate � � �uv.

For the second case with a Hamiltonian being a
sum of time-periodic but mutually commuting Ham-
iltonians, we demonstrated that the dynamic phase is
given by a sum of two terms

�uv�t, 0� � �uv
�0� t � ��uv �t, 0� [11]

where �uv
(0) is defined analogously to Eq. [6], with the

distinction that it involves the difference between the
m � 0 Fourier components of the Hamiltonian eigen-
values:

�uv
�0� � �v

�0� � �u
�0� [12]

with the Fourier components defined from the series

�u�t� � �
m�
2

2

�u
�m�exp�im�rt	 [13]

We showed that under magic-angle-spinning condi-
tions (MAS), each Hamiltonian eigenvalue Fourier com-
ponent �u

(0) only depends on the isotropic (i.e., orienta-
tional-independent) parts of the spin interactions. The
m � 0 Fourier components, on the other hand, contain
the anisotropic (orientationally dependent) parts of the
spin interactions. These, in turn, are contained in the
dynamic phase ��uv(t, 0) of Eq. [11]. ��uv(t, 0) is peri-
odically time dependent and given by

��uv �t, 0� � �i�r�

1

� �
m�0

m
1��v
�m� � �u

�m�	�exp�im�rt	 � 1� [14]

The expression for the time-domain signal is finally
obtained after Fourier expanding the function
exp{i�uv (t, 0)} and inserting the result into the
generic expression for the signal, Eq. [5]:

s�t� � �
u,v�1

� �
k�
�

�

auv
�k�exp�i�uv

�k�t	 [15]

The spectral amplitudes and frequencies are given by

auv
�k� � auvcuv

�k� [16]

and

�uv
�k� � �uv

�0� � k�r [17]

respectively, with cuv
(k) being a Fourier component

defined in Eq. [I-208]. After Fourier transformation of
the time-domain signal, the NMR spectrum takes the
following form:

S��� � �
u,v�1

� �
k�
�

�

auv
�k�
��, �uv

�k�� [18]

As discussed in Part I, each pair of Hamiltonian
eigenstates {�u�, �v�} produces an NMR spectrum
corresponding to a sideband manifold. A peak within
a manifold is separated from its neighbor by the
spinning frequency �r, according to the expression
for the frequencies given by Eq. [17]. The total spec-
trum is the sum over all such manifolds.

In the following sections, we present computer
routines for numerically evaluating these expressions.

GENERAL COMMENTS ON THE
COMPUTER CODE

The mathematical formalism underlying the NMR the-
ory must be converted into computer code in the numer-
ical simulation program. There exist a large number of
programming languages that are suitable; the most com-
monly used are FORTRAN (3), C (4, 5), C�� (6), and
MATLAB (7). The fragments of C code presented in
this article are relatively compact to illustrate the imple-
mentation of the theory presented above, using the same
definitions of the NMR interactions, tensors, and trans-

COMPUTER SIMULATIONS IN SOLID-STATE NMR. II 3

formations as presented in Part I. These routines (typed
in monotype font) are programmed mainly for the sake
of clarity and generality rather than for efficiency of
execution or implementational elegance. They should be
regarded as examples of implementations rather than
“ultimate solutions.”

Each entity introduced in Part I will be represented in
the computer program by suitable data type. For exam-
ple, all operators [e.g., �̂(t), Q̂, and Ĥ] are represented by
matrices. Second-rank irreducible spherical tensors cor-
respond to (1 � 5) matrices, i.e., row vectors. The
elements of matrices, as well as the components of
tensors, are represented by complex numbers. Especially
when using object-oriented languages such as C�� (6),
the computer code may be formulated to closely resem-
ble equations as they are formulated on paper.

The code was programmed using the GNU C��
(20) compiler, but should be compatible with many
other compilers. The code is based on the C��
classes for handling complex numbers and matrices
provided by GAMMA (21, 22), which is a general
simulation environment comprising C�� code for a
large variety of NMR simulations. The code in this
article (and the following article in this series) does
not, however, use the GAMMA library of routines for
NMR simulations, but represents an extract of an
alternative code. We refer to the GAMMA online
manual (22) for details on the use of the complex/
matrix routines used here. For brevity, only the code
for the parts of the programs that are directly relevant
for the NMR implementations are reproduced. Aux-
iliary routines, such as those for memory allocations
of arrays and Fourier transformations are excluded:
The complete source code may be found in Ref. (23).

Array Indexing

The source code makes use of the standard data types
provided in C but employs additional routines for
dynamic memory allocation (3, 4, 6), meaning that
the memory needed for storing the elements of an

array are reserved and released when needed during
runtime of the program. Note, however, that older
versions of FORTRAN (e.g., FORTRAN 77) do not
support dynamic memory allocation. Array indexing
follows the standard convention in C/C�� (4, 6). For
example, a one dimensional array of double-precision
floating point numbers may be declared as

double *double_list

and allocated to comprise 100 elements by the instruc-
tion

double_list�d_array1(100)

where “d” specifies “double precision” and “1” implies
it is a one dimensional array. The first and last elements
of this array correspond to double_list[0]
and double_list[99], respectively. Likewise,
“c_array1(5)” allocates memory for five complex
numbers. A similar indexing also applies to the ma-
trices provided by GAMMA. For example, for a vari-
able M (declared as matrix M), M(3,1) represents
the matrix element M42, i.e., the element of the fourth
row and second column of the matrix M.

Second-rank irreducible spherical tensor elements are
ordered as in Eq. [I-50], i.e., (A22, A21, . . . , A2
2). For
example, for the variable tensor [declared as a (1 � 5)
matrix] the element tensor(0,3) corresponds to the
tensor component A2
1.

Representing Euler Angles

For handling the Euler angles, a data type euler is
defined through

struct euler {
//euler angle: {alpha,beta,gamma}
double alpha,beta,gamma;
};

A variable angle declared as type euler contains a
triplet of Euler angles {�, �, �}. The numerical values of
�, �, and � are set by calling the routine setEuler:

void setEuler(euler &angle,double alpha,double beta,double gamma)
//constructs the euler angle triplet
//INPUT: (alpha,beta,gamma) in degrees
//OUTPUT: angle with the components in rads
{
angle.alpha�(alpha�Pi/180.);
angle.beta�(beta�Pi/180.);
angle.gamma�(gamma�Pi/180.);
}

4 EDÉN

The constant Pi is defined to hold the value of � �
3.141592. Note that the routine inputs the Euler angle
components in units of degrees and constructs the
Euler angle variable with the components in units of
radians. For example, setEuler(angle,
120.,45.,90.) assigns the value {�, �, �} �
{2�/3, �/4, �/2} to angle. The values of the angles
�, �, and � are accessed through angle.alpha,
angle.beta, and angle.gamma, respectively.

The following three sections discuss the main parts
of a numerical simulation program, as outlined earlier
in Part I: initialization, spin dynamics calculation, and
data postprocessing.

INITIAL STEPS OF NUMERICAL
SIMULATIONS

Input Data

There are various ways to provide the input data. For
example, it may be entered explicitly by the user when
the program is executed. A more flexible approach,

however, is to construct a separate “parameter file” for
each simulation program. Such a parameter file should
contain all necessary information for the calculations,
and is subsequently read from disk at the start of the
program.

One has to choose suitable units for the input data. In
the examples here, the magnitudes of the spin interac-
tions are input in units of Hz and the PAS tensor orien-
tations in degrees. However, when the program is exe-
cuted these values are directly converted into angular
frequency units (rad s
1) and radians for the magnitudes
and orientations, respectively, as these are the relevant
units when constructing the Hamiltonian.

Constructing Spatial Tensors

Next, it is necessary to construct the spatial tensors
from the interaction parameters and represent them in
a convenient form in the computer memory. Initial-
ization of a second-rank tensor in its PAS may be
programmed according to

matrix L2TensorSetup(double w_aniso, double asym)
// This routine may be used for constructing the second-rank spatial tensor of the anisotropic
// chemical shift, J, dipolar and first order quadrupolar interactions, provided that the
// following input is used for w_aniso:
// CS: w_aniso��delta_aniso�w0 (w0 is the Larmor frequency)
// Q: w_aniso��Qcc/(2I(2I
1)), where Qcc is the quadrupolar coupling constant
// D: w_aniso�2�.b_jk (Note factor of 2!)
{
matrix tensor(1,5,0.);
tensor(0,0)�
(asym�w_aniso)/2.;
tensor(0,2)�sqrt(1.5)�w_aniso;
tensor(0,4)�tensor(0,0);
return tensor;
}

This routine may be used for constructing any second-
rank spatial tensor (according to the expressions given
in Table I-2 and I-3), where the anisotropy of the
tensor, labeled w_aniso, corresponds to
aniso�0,
Janiso, 2bjk, and �Q/(2I(2I
 1)) for the CSA, J,
dipolar and quadrupolar interactions respectively.

Because several interactions are normally involved
in a simulation, it is beneficial to initially transform
each tensor to a molecular frame (as discussed in Part
I) and use this as input to the subsequent spin dynam-
ics routine. This transformation (Eq. [I-89]) may eas-
ily be accomplished by a matrix multiplication as

tens_M�tens_P*WignerD(angle_PM)

where tens_P and tens_M is the tensor in the PAS
and molecular frame, respectively, and the routine
WignerD2(angle_PM) returns the matrix represen-
tation of the operator D̂(2)(�PM). However, since such
transformations are repeatedly used during the course of
the simulation, the computational effort is reduced by
first analytically evaluating the matrix–vector multipli-
cation for a general case and using that in the computer
implementation. The code L2tensor_transform
below is an example of such a routine for transforming
an irreducible second-rank tensor, represented as a 1 �
5 matrix, from a general reference frame F into another
frame G, and may be used, for example, for the trans-
formations P3 M and M3 R.

COMPUTER SIMULATIONS IN SOLID-STATE NMR. II 5

double sqr(double x) {return x�x}; //calculate the square of the number x
matrix L2tensor_transform(matrix tensor, euler angle)
// transforms a tensor between two frames (G is the final one) using analytical equations (angles in rad)
// tensor elements are ordered as tensor(0,0)�A_22, tensor(0,2)�A_20
{
double a,b,g,cosb,cos2b,sinb,sin2b,cosb_Pone,cosb_Mone;
complex X22,X21,A20,c_X21,c_X22,exp_Ma;
matrix A_G(1,5,0.);

a�angle.alpha;b�angle.beta;g�angle.gamma; //get each of the Euler angle components

cosb�cos(b);cos2b�cos(2.�b);cosb_Mone�cosb
1.;cosb_Pone�cosb�1.;
sinb�sin(b);sin2b�sin(2.�b);exp_Ma�exp(
I�a);
X22�(tensor(0,0)�sqr(exp_Ma));c_X22�conj(X22);
X21�(tensor(0,1)�exp_Ma);c_X21�conj(X21);
A20�tensor(0,2);

//construct m�2 component
A_G(0,0)�exp(
2.�I�g)�(X22�sqr(cosb_Pone) � c_X22�sqr(cosb_Mone)

� sqrt(3./2.)�A20�(1.
cos2b) � 2.�sinb�(X21�cosb_Pone � c_X21�cosb_Mone))/4.;
//m�1
A_G(0,1)�exp(
I�g)�(
sinb�(X22�cosb_Pone � c_X22�cosb_Mone)

� sqrt(3./2.)�A20�sin2b � X21�(cosb�cos2b)
 c_X21�(cosb
cos2b))/2.;
//m�0
A_G(0,2)�sqrt(3./8.)�(sqr(sinb)�(2.�Re(X22))

� A20�(1.�3.�cos2b)/sqrt(6.)
 sin2b�(2.�Re(X21)));
//use the symmetries of the components
A_G(0,3)�
conj(A_G(0,1));A_G(0,4)�conj(A_G(0,0));

return A_G;
}

With our indexing conventions for the tensor compo-
nents, the elements [A22]G, [A21]G, and [A20]G are
represented in the computer code by A_G(0,0),
A_G(0,1), and A_G(0,2), respectively. Note that
only these three components are calculated explicitly
by the analytic transformations. The elements
[A2
1]G and [A2
2]G are constructed directly from
the others using the symmetries of the spherical tensor
components expressed by Eq. [I-51], as discussed in
Part I.

Matrix representations for the spin operators are
also needed. As outlined in Part I, this is done
preferably by taking successive direct products of
smaller matrices. Because the implementations of
such calculations are heavily dependent on the
available library of matrix routines, we will not
discuss them here.

SPIN DYNAMICS CALCULATION

Constructing the Hamiltonian

We continue by outlining a computer implementation
for constructing spin Hamiltonians. This step is nor-
mally required repeatedly during the course of execu-
tion of the program.

According to Eq. [I-60], the Hamiltonian for an
interaction � is calculated by multiplying the compo-
nent [A20

�]L (a real number) with its corresponding
spin tensor operator T̂20

� (a matrix). It is now required
to convert the vector representing the spatial tensor in
either the PAS or the molecular frame into the m � 0
laboratory frame component, as expressed by Eqs.
[I-91] and [I-95], respectively. These transformations
may be implemented in various ways. Since only one
component, [A20

�]L, is needed, it is convenient to use
an analytic expression for this element, instead of first
constructing the whole tensor and then extracting the
m � 0 component. The computer implementation is

6 EDÉN

double L2tensorToLab_m0(matrix tensor, euler angle)
// transforms a 2nd rank tensor from the molecular (or PAS) frame to the lab-frame,
// using analytical equations (angles in rad), and returns the m�0 component.
{
double a,b;
complex X22,X21,exp_Ma;
a�angle.alpha;b�angle.beta;
exp_Ma�exp(
I�a);X22�(tensor(0,0)�sqr(exp_Ma));X21�(tensor(0,1)�exp_Ma);
return sqrt(3./2.)�(sqr(sin(b))�Re(X22)
 sin(2.�b)�Re(X21)�

(Re(tensor(0,2))�(1.�3.�cos(2.�b))/(2.�sqrt(6.)));
}

The routine L2TensorToLab_m0 is suitable for
calculations involving static solids. On the other hand,
for a rotating solid, requiring two transformations M
3 R 3 L, it is necessary to calculate the Fourier

components ��
(m) of Eq. [I-105]. The routine

getSpatialFourierComponents given below
may then be employed (with an arbitrary angle �RL as
input):

matrix getSpatialFourierComponents(matrix tensor, euler MR,double betaRL)
//INPUT: a 2nd rank tensor in the molecular (or PAS) frame
//OUTPUT: the Fourier components of the tensor in the laboratory frame
}
tensor�L2tensor_transform(tensor,MR); //do M
�R transformation
//multiply with the d_m0(betaRL) elements
tensor(0,0)�sqrt(3./8.)�sqr(sin(betaRL))�tensor(0,0);
tensor(0,1)�
sqrt(3./8.)�sin(2�betaRL)�tensor(0,1);
tensor(0,2)�(tensor(0,2)�(3.�sqr(cos(betaRL))
1.))/2.;
//use the symmetries of the components
tensor(0,3)�conj(tensor(0,1));tensor(0,4)�conj(tensor(0,0));
return tensor;
}

Note that first the molecular frame is transformed into
the rotor frame using the routine L2Tensor_
transform introduced earlier. Next, Eq. [I-105] is
implemented by multiplying each rotor frame compo-
nent [A2m

�]R with the corresponding reduced Wigner
element dm0

2 (�RL). The routine returns a matrix contain-
ing the desired components, ordered as {��

(2), ��
(1), ��

(0),
��

(
1), ��
(
2)}. Analogously to the routine L2Tensor_

transform, only the components ��
(m) with m � 0 are

calculated explicitly; the remaining two components are
obtained directly from the symmetry Eq. [I-106].

Propagators from Time-Independent
Hamiltonians

In this section we describe how to numerically calculate
the propagator Û(t, t0) generated from a time-indepen-
dent Hamiltonian over the interval � � t
 t0. As
discussed in Part I, this represents the simplest possible
spin dynamics scenario, and applies to a static solid in
the absence of RF fields or in the presence of an RF field
of constant amplitude, phase, and frequency. However,

as we shall see soon, all more complicated time-depen-
dent cases are solved by reducing the problem to a
sequence of “locally time-independent Hamiltonians” by
considering smaller time segments in the integration of
the Schrödinger equation.

The gist of this calculation is to first apply Eq.
[I-5], i.e., diagonalizing the Hamiltonian to obtain
Ĥdiag. Formally, this is expressed

Ĥdiag � X̂†ĤX̂ [19]

and is carried out in practice by using a “matrix diago-
nalization” routine from some library of matrix routines,
for example, those provided in Refs. (5, 21, 22). Next,
the propagator is obtained as the exponential of the
operator (
i�Ĥdiag) according to Eq. [I-21]:

Û�t, t0� � exp�
i�Ĥ	 � X̂ exp�
i�Ĥdiag	X̂
† [20]

The procedure is carried out by the following steps:

COMPUTER SIMULATIONS IN SOLID-STATE NMR. II 7

1. Diagonalize the Hamiltonian Ĥ, i.e., find its
eigenvalues and eigenvectors numerically.

2. Construct the diagonal eigenvalue matrix and
the transformation matrix X̂ having the eigen-
vectors of Ĥ as columns.

3. Calculate the matrix having the exponentiated
Hamiltonian eigenvalues (�u) on the diagonal
using Eq. [I-20]:

exp�
i�Ĥdiag	 � �
exp�
i��1	 0 0 · · · 0

0 exp�
i��2	 0 · · · 0
0 0 exp�
i��3	 · · · 0
···

···
···

· · ·
···

0 0 0 · · · exp�
i���	
� [21]

4. Form the product X̂ exp{
i�Ĥdiag}X̂† accord-
ing to Eq. [20].

These steps are implemented in the C routine be-
low, which uses a a time-independent Hamiltonian
(Ham) and time segment � (tau) as input parameters:

matrix propagator(const matrix &Ham, double tau)
// INPUT: a Hamiltonian (Ham)
// OUTPUT: the propagator exp(
I�Ham�tau)
{
int n_states�Ham.rows(); //get number of eigenstates
matrix Ham_diag,X,expHam_diag(n_states,n_states,0.); //declare the necessary matrices

diag(Ham,Ham_diag,X); //diagonalize the Hamiltonian
for(int u�0;u�n_states;u��) //calculate exponential of Ham_diag
expHam_diag(u,u)�exp(
I�Ham_diag.get(u,u)�tau);

return X�expHam_diag�adjoint(X); //return the propagator
}

Steps 1 and 2 above are carried out by the matrix
routine diag(Ham,Ham_diag,X) of the
GAMMA package. It takes the Hamiltonian matrix as
input and returns the diagonal eigenvalue matrix
(Ham_diag), as well as the transformation matrix
(X). Next, step 3 is implemented as a for loop over
all values u � 0, 1, . . . , n_states-1, where
n_states is the number of Hamiltonian eigenstates.
Finally, the matrix product in Eq. [20] is returned.

Propagators from Time-Periodic
Hamiltonians

Here we discuss useful properties of propagators from
a time-periodic Hamiltonian that fulfill the condition

Ĥ�t � NT� � Ĥ�t� [22]

for integral N. For samples undergoing MAS, T is equal
to the rotational period �r. Although the results discussed

here hold in general for any periodic Hamiltonian, they
are proven under the assumption of a dynamically inho-
mogeneous Hamiltonian, obeying [Ĥ(t), Ĥ(t�)] � 0 for
all time points t and t�. The consequence is that time
ordering need not be taken into account (see page 139 of
Part I). The corresponding proof in the general case of a
dynamically homogeneous Hamiltonian are similar in
spirit but require a more technical formalism; more
complete discussions on the topic of periodic Hamilto-
nians may be found in Refs. (18, 24, 25) and applica-
tions to numerical problems are discussed in Refs. (26–32).

Consider a time segment �ba � tb
 ta between
two time points within the first period T, i.e., 0 �
ta � T and 0 � tb � T. For a dynamically inhomo-
geneous Hamiltonian, the general form of the propa-
gator over the time interval �ba is given by Eq. [I-141]:

Û�tb, ta� � exp�
i �
ta

tb

dt�Ĥ�t��� [23]

8 EDÉN

Then, consider two additional time points, tb � NT
and ta � NT, each obtained by time shifting tb and ta,
respectively, by exactly N periods T. By definition,
the propagator between the two time points t � ta �
NT and t � tb � NT is given by

Û�tb � NT, ta � NT� � exp�
i �
ta�NT

tb�NT

dt�Ĥ�t��� [24]

By making the following substitution of the integra-
tion variable

t � t� � NT [25]

we obtain

Û�tb � NT, ta � NT� � exp�
i �
ta

tb

dtĤ�t � NT�� [26]

From the periodicity of the Hamiltonian, H(t � NT)
� H(t), it then follows that (25)

Û�tb � NT, ta � NT� � Û�tb, ta� [27]

Equation [27] states that the propagator Û(tb, ta) over
the interval from t � ta to t � tb is the same as that
over the interval from t � ta � NT and t � tb � NT.
In other words, the propagator over a given time
segment has the same periodicity as the Hamiltonian
(cf. Eqs. [27] and [22]).

Because the propagator is the exponential function
of the integral of the Hamiltonian, it is instructive to
relate the meaning of Eq. [27] to the following simple
case: Assume a function f(x) of the real variable x,
fulfilling the periodicity f(x � C) � f(x) for a given
constant C. Now we select two values of the variable,
xa and xb, both within the interval 0 � x � C, and
define the function F(xb, xa) as the integral of f(x)
between xa and xb:

F� xb, xa� � �
xa

xb

dxf� x� [28]

F(xb, xa) may be interpreted as the area enclosed by
the curve y � f(x) and the line y � 0 between the
values xa and xb. Since f(x) is periodic, it follows that
the area enclosed between the values x � xa and x �
xb is the same as that between the two points xa � C

and xb � C (obtained from a shift by C); hence,
F(xb, xa) � F(xb � C, xa � C). This is an
analogous statement to the periodicity property of the
propagator, expressed by Eq. [27].

Equation [27] may be used to demonstrate another
useful property of propagators obtained from time-
periodic Hamiltonians (25):

Û�� � T, 0� � Û��, 0�Û�T, 0� [29]

Note that the right side of Eq. [29] only comprises
time points within the first period of the Hamiltonian
(i.e., 0 � t � T). Consequently, the propagator
obtained as the solution of the Schrödinger equation
over any time interval may be expressed as a product
of propagators, each involving only time points within
the first period T. For instance, assume that we want
to determine the propagator acting from t � 0 to t �
� � T, i.e., over the time segment �tot � [0 � t �
� � T]. This corresponds to the operator on the left
side of Eq. [29]. We assume that � � T. Following
the procedure discussed on page 138 of Part I, we
divide this interval into two smaller segments: �A �
[0 � t � T] and �B � [T � t � � � T]. The former
interval corresponds to the first completed period T,
while the latter interval starts at the next period.
According to Eq. [I-121], we may express the prop-
agator over �tot as the time-ordered product (14–18)
of the propagators over the smaller time segments �A

and �B:

Û�� � T, 0� � Û��B�Û��A� [30]

� Û�� � T, T�Û�T, 0� [31]

However, from Eq. [27] it follows that Û(� � T,
T) � Û(�, 0), giving Û(� � T, 0) � Û(�, 0)Û(T, 0),
which is the desired result, Eq. [29].

In this case, we considered time points not extend-
ing further than 2T. However, by a straightforward
extension of these arguments one can show that the
accumulated propagator from t � 0 out to a time
point t � � � NT within the N � 1 period may be
calculated according to

Û�� � NT, 0� � Û��, 0��Û�T, 0�	N [32]

which involves raising the period propagator Û(T, 0)
to the Nth power (and may be done using the results
of Part I).

The consequences of Eqs. [27] and [32] for numer-
ical simulations of rotating solids are that the Schrö-
dinger equation needs only to be integrated over the

COMPUTER SIMULATIONS IN SOLID-STATE NMR. II 9

first rotational period, as it contains all information
required for calculating the spin dynamics (i.e., prop-
agating the density operator) out to arbitrarily large
time points. Because the numerical diagonalization
required to construct the propagators (see the previous
section) are in general the most time-consuming step
in the simulation, exploiting Eqs. [27] and [32] may
give large savings in computational time. Such issues
are discussed in more detail in Ref. (32).

Time-Domain Versus Frequency-Domain
Simulations

There are two main approaches for carrying out spin
dynamics calculations: One involves calculating the
time signal as a set of discrete time points, thereby
emulating the recording of the experimental NMR
signal. The simulated signal is subsequently con-
verted into a frequency-domain spectrum by a discrete
Fourier transformation. This corresponds to a numer-
ical implementation of Eq. [2] and is referred to as
“simulation in the time domain.” The other approach
is to generate the spectrum directly by calculating a
set of frequencies and amplitudes through Eq. [10] or
[18]. This is referred to as a “frequency-domain cal-
culation.” The choice of a particular simulation tech-
nique depends on the given problem and preferences
of the programmer. The frequency-domain calcula-
tions are often more efficient and also have the ad-
vantage of providing unlimited frequency resolution,
whereas the time-domain approach is physically more
intuitive and more straightforward to implement nu-
merically. Below, we describe both the time- and
frequency-domain approaches.

Time-Domain Calculation: “Direct Method”

The time-domain calculation outlined here is referred
to as the “direct method” (33) and is the most wide-
spread simulation technique. We first outline its most
general form, applicable to any Hamiltonian, not nec-
essarily self-commuting. Then, we discuss how it may
be more efficiently evaluated in the dynamically in-
homogeneous cases considered in this article.

Assume that the time span of the calculation is �acq,
analogous to the experimental acquisition interval in-
troduced on page 122 of Part I. Further, assume that
the experiment starts at t0 � 0 and that q samples of
the NMR signal are calculated at the evenly spaced
time points

tj � j� � j�acq/q, j � 0, 1, 2, . . . , �q � 1� [33]

Now, label the interval �j so that it includes all time
points tj
1 � t � tj. For q time points tj there are

consequently (q
 1) intervals �1, �2, . . . , �q
1, all
of equal duration �. Note that the interval � has
exactly the same role for the simulation as �dwell (Eq.
[I-31]) has for the acquisition of the experimental
time-domain signal.

The “direct method” for obtaining the NMR time
signal from a single molecular orientation proceeds as
explained below and outlined in the flowchart of Fig.
1. C code implementations of the direct method are
given in Examples 1 and 2.

Figure 1 Flowchart for the direct method in the time
domain. Relevant parameters, such as observable and initial
density operators, number of sampled points (q), and the
duration of the time segments (�), are used to calculate the
NMR time-domain signal. After the parameters are input,
the program proceeds as follows: The signal at t � t0 is
calculated. Then follows a loop over the index j that extends
over all sampled points j � 0, 1, 2, . . . , (q
 1). For each
value of j, the following consecutive steps are executed: (1)
Each time point tj is calculated from Eq. [33]; (2) each
propagator Û(�j) is estimated numerically as discussed in
the text; (3) the density operator �̂(tj) is obtained from Eq.
[44]; (4) the time signal s(tj) is calculated (Eq. [45]). An
explicit C code implementation of this algorithm is given in
Example 1.

10 EDÉN

Constructing the Propagator in the General Case.
The first step toward obtaining the NMR signal in-
volves integration of the Schrödinger equation (Eq.
[4]) over each of the time intervals �j. This results in
q
 1 propagators, Û(�j) � Û(tj, tj
1), with 1 �
j � (q
 1). Each of these are in general obtained as
described below.

Because the Hamiltonian is often time dependent
during �j, one has to find an approximate form of the
propagator Û(tj, tj
1). This is done by dividing �j

into (q�
 1) smaller time segments ��, over each of
which the Hamiltonian is constant (to a good approx-
imation). Assume the propagator over the j�th time
segment within the segment �j is to be estimated. This
interval is denoted �j, j� and corresponds to the time
points tj
1 � (j�
 1)�� � t � tj
1 � j���. Figure
2 depicts the relationship between the various time
points, time intervals, and propagators in use.

The instantaneous Hamiltonian at the midpoint of
the interval �j, j� is then diagonalized, i.e., its eigen-
vectors and eigenvalues are calculated numerically:

Ĥdiag�tmid� � X̂�tmid�
† � Ĥ�tmid� � X̂�tmid�,

tmid � tj
1 � 	 j� �
1

2
�� [34]

Here, Ĥdiag is the diagonal matrix of the eigenvalues
of the Hamiltonian and the columns of the matrix X̂
correspond to the normalized eigenvectors (implying
that X̂ � X̂† � 1̂). Finally, the propagator acting over
�j, j� is estimated by calculating the exponential of the
diagonalized Hamiltonian

Û��j, j�� � X̂�tmid� � exp�
iĤdiag�tmid�	 � X̂†�tmid� [35]

Note that Eqs. [34] and [35] correspond exactly to
Eqs. [19] and [20], respectively: Provided that small
enough time segments are considered (so that the
Hamiltonian is nearly constant over each segment),
the calculation of a propagator from a time-dependent
Hamiltonian reduces to that of a series of time-inde-
pendent ones.

Once each of the (q�
 1) propagators Û(�j, j�) are
calculated, the construction of the “segment propaga-
tor” Û(�j) follows by forming a product of the “small-
segment” propagators Û(�j, j�)

Û��j� � Û�tj, tj
1� � Û��j,q�
1� � · · · � Û��j,2� � Û��j,1�

[36]

Note that the product is time ordered such that prop-
agators involving later time points appear to the left,
i.e., the index j� increases from right to left (see Part
I). This is necessary when the Hamiltonian does not
commute with itself at two different time points, i.e.,
for dynamically homogeneous problems. For dynam-
ically inhomogeneous cases, however, time ordering
need not be considered.

In the general case, this procedure involves apply-
ing Eq. [35] (q
 1)(q�
 1) times to obtain all
(q
 1) propagators Û(tj, tj
1). From this set of
operators, it is also possible to calculate the “accumu-
lated propagators” (shown at the top of Fig. 2), acting

void getSignalStatic(const matrix &Ham, const matrix &rho0, const matrix &Q,
complex� FID, int q, double dwell)

// time-domain calculation: “direct method” for static Hamiltonian
// INPUT: (time-independent) Hamiltonian (Ham), initial density operator
// (rho0), observable (Q) and the time-resolution (dwell)
// OUTPUT: q points of the time-signal (FID)
{
matrix U�propagator(Ham,dwell); //get the propagator
matrix U_adjoint�adjoint(U); //calculate the inverse (adjoint) operator

matrix rhoTemp�rho0;
for(int j�0;j�q;j��) {
FID[j]�trace(rhoTemp,Q); //one point of the FID
rhoTemp�(U�rhoTemp�U_adjoint); //update the density operator

}
}

Example 1 Routine getSignalStatic for generating the NMR time-domain signal by the
direct method, assuming arbitrary initial density (rho0) and observable (Q) operators, and a
time-independent Hamiltonian (Ham), according to the flowchart of Fig. 1. The routine outputs the
signal (FID) as an array of q complex numbers, corresponding to the signals s(tj), with j � 0,
1, . . . , (q
 1).

COMPUTER SIMULATIONS IN SOLID-STATE NMR. II 11

Figure 2 Relationship between time points and propagators over time segments used in the “direct
time domain” calculation. The total time-span �acq, over which the density operator is to be
propagated, is divided into (q
 1) segments �j (Eq. [33]). These time segments are indicated
beneath the top block of shaded rectangles. Each block represents a propagator. For example, Û(�j)
is calculated as follows: First, each segment �j is divided up further into (q�
 1) segments �j, j�,
with q� chosen such that the Hamiltonian is to a good approximation time independent over �j, j�.
The bottom block of shaded rectangles illustrates this division for one segment �j. Next, the
“small-segment” propagator Û(�j, j�) is estimated from the Hamiltonian (evaluated at the midpoint
of the interval �j, j�) according to Eq. [35]. This calculation is repeated for all intervals �j, j�, and the
propagator Û(�j) � Û(tj, tj
1) over the segment �j is calculated from a time-ordered product (Eq.
[36]). These calculations are repeated for all segments �j. Once all propagators Û(�j) (j � 0,
1, . . . , (q
 1)) are calculated, they may be used to form a set of “accumulated propagators”
(indicated by arrows in the top of the figure) according to Eq. [37].

12 EDÉN

from t � 0 out to t � tj, by again forming a
time-ordered product:

Û�tj, 0� � Û��j� � · · · � Û��2� � Û��1� [37]

� Û�tj, tj
1� � · · · � Û�t2, t1� � Û�t1, 0� [38]

Special Case: Time-Periodic Hamiltonians. As dis-
cussed earlier, it is possible to reduce the computa-
tional effort significantly if the Hamiltonian is either
time independent or periodic in time. If the Hamilto-
nian is periodic, Ĥ(t � �r) � Ĥ(t) (applying to
experiments with rotating solids), it is sufficient to
construct the propagators over only the first rotational
period �r, as they carry all the relevant information
about the spin dynamics at all times.

Assume that n � 1 time points are sampled such
that

tp � p�r/n, p � 0, 1, 2, . . . , n [39]

Note the range of p, which includes both p � 0 and
p � n. The sampling of the n � 1 time points results
in a division of the interval 0 � t � �r into n time
segments of equal duration �r/n. This should be small
enough that the Hamiltonian may be approximated as

time independent over each segment, as discussed
above. Note that the interval �r/n is not necessarily
related to the “dwell time” � defined in Eq. [33] and
used for sampling the NMR time-domain signal.
However, to fully exploit the periodicity of the Ham-
iltonian, it is desirable to synchronize the intervals
�r/n and � as follows:

� � n1�r/n [40]

where n1 is any positive integer. This means that �
should be an integral multiple of �r/n. An example of
this “synchronization procedure” with q � 6, n � 4,
and n1 � 2 is given in Fig. 3.

Next, all n propagators Û(tp, tp
1) for 1 � p � n
are calculated from Eq. [35]. As follows from Eq.
[27], the propagators over the time segments �r/n are
periodic with �r, i.e., periodic with the parameter n
according to

Û�tp�n, tp�n
1� � Û�tp, tp
1� [41]

By applying Eq. [29] it follows that the propagator
acting from t � 0 to t � tp�n may be calculated as
a product involving the propagator from t � 0 to t �
tp and the propagator from t � 0 to t � tn:

void getSignalPeriodic(matrix �Ham_list, const matrix &rho0, const matrix &Q,
double T,int n,complex� FID, int q)

// time-domain calculation: “direct method” for a time-periodic Hamiltonian with
// the period T divided into n time-segments. The parameters should fulfill
// T/n�m � tau_acq, where tau_acq is the acquisition time, and m is any positive integer
// INPUT: initial density operator (rho0), and observable (Q), and a list of
// Hamiltonians (Ham_list), where Ham_list[p] is the value of the Hamiltonian at
// the midpoint of the pth segment: (p�0.5)�T/n,
// OUTPUT: q samplings of the time-signal (FID) using a dwell-time � tau_acq/q
{
int n_states�Ham_list[0].rows(); //get number of eigenstates
matrix �U_list;
U_list�m_array1(n,n_states,n_states); //allocate memory for n propagators
for(int p�0;p�n;p��)
U_list[p]�propagator(Ham_list[p],T/double(n)); //construct list of propagators

matrix rhoTemp�rho0;
for(int j�0;j�q;j��) {
FID[j]�trace(rhoTemp,Q); //one point of the FID
//update rho using the current propagator of U_list (a%b corresponds to a MOD b)
rhoTemp�(U_list[j%n]�rhoTemp�adjoint(U_list[j%n]));
}
del_m_array1(U_list); //free allocated memory
}

Example 2 Routine getSignalPeriodic for generating the NMR time-domain signal by the
direct method, assuming a time-periodic Hamiltonian with period T. For a rotating sample, T � �r.
The code is implemented according to the flowchart in Fig. 1. Ĥ(t) is assumed to be approximated
as a list (Ham_list) of n piece-wise time-independent Hamiltonians, sampled at equal time steps
over the interval [t0, t0 � T]. t0 is the initial time point and Ham_list[p] is the Hamiltonian
at the midpoint of the pth segment: t � t0 � (p � 0.5)T/n.

COMPUTER SIMULATIONS IN SOLID-STATE NMR. II 13

Û�tp�n, 0� � Û�tp, 0�Û�tn, 0� [42]

Provided that the “synchronization condition” Eq.
[40] is met, the propagator involving any time point
being an integer multiple of the time segment �r/n
may be constructed by using propagators involving
time points only within the first rotational period
0 � t � �r. Consequently, the Schrödinger equation
need only be integrated between t � 0 and t � �r to
allow the calculation of s(j�) for arbitrarily large j.

Propagation of the Density Operator. The density
operator at time point tj may be calculated either from
�̂(0) by using the propagator acting from t � 0 to t � tj

�̂�tj� � Û�tj, 0��̂�0�Û�tj, 0�† [43]

or recursively from the density operator at the previ-
ous time point �̂(tj
1)

�̂�tj� � Û�tj, tj
1��̂�tj
1�Û�tj, tj
1�
† [44]

by using the segment propagator acting from t � tj
1

to t � tj. In the flowchart of Fig. 1 and the C code
implementations of Examples 1 and 2, the latter ap-
proach is employed. The density operator propagation
is repeated for all q time points, which is in practice
implemented as a loop over the variable j (see Fig. 1
as well as Examples 1 and 2).

Time-Domain Signal and Spectrum. The NMR
time-domain signal at t � tj is obtained from Eq. [2]

s�t� � �Q̂��t� � Tr��̂�t�Q̂	 [45]

and is preferably implemented as a pair-wise multipli-
cation of the elements of the two operators (Eq. [I-134]):

Figure 3 Relationship between propagators over various time segments for a periodic Hamiltonian
in a rotating solid, i.e., a Hamiltonian obeying Ĥ(t � �r) � Ĥ(t). In this example, the acquisition
interval �acq is divided into q � 6 smaller intervals � and the rotational period �r is divided into n �
4 smaller segments �r/4. The index q indicates points where the time-domain signal s(tq) is to be
sampled, whereas the index p indicates the time points confining each segment of �r. Note that in
the present case �acq spans exactly 2.5 rotational periods. The given divisions of smaller intervals of
�acq and �r allows exploiting the periodicity of the Hamiltonian in the numerical simulation to avoid
unnecessary calculations. This means that the Schrödinger equation need only be integrated from t0

to t0 � �r, resulting in the four propagators Ûp. The propagator over each interval � is obtained from
a time-ordered product of Ûp using Eq. [38]. This is exemplified by the calculation of the propagator
Û(t5, t0), as indicated in the bottom of the figure.

14 EDÉN

s�tj� � �
a,b�1

�

��̂�tj��ab�Q̂�ba [46]

This is computationally more efficient than directly us-
ing Eq. [45] (where the trace is taken after forming the
product) because the redundant off-diagonal elements of
the matrix product �̂(tj)Q̂ are then not evaluated (32).

This calculation is repeated for all q time points.
Finally, Fourier transformation of the set {s(tj)} pro-
duces a set of spectral amplitudes {aj(�j)}. The cor-
responding frequency coordinates are converted into
units of Hz: They are distributed evenly over a fre-
quency range {
1/(2�) � vres, 1/(2�)} with the reso-
lution vres � �res/2� � �acq

1 � (q�)
1, as discussed
in Part I. Note that the larger the acquisition interval
the finer the frequency resolution.

Frequency-Domain Simulation

As explained in Part I, Hamiltonians being either time
independent or time periodic and self-commuting gives
rise to spin dynamics that may be solved analytically. In
the time-independent case, the expression for the fre-
quency-domain spectrum (Eq. [10]) was derived. Like-
wise, for the periodic Hamiltonian, the corresponding
expression was shown to correspond to Eq. [18]. This
section outlines how the mathematical procedure may be
converted into computer code to numerically calculate
the NMR frequency-domain spectrum of a single mo-
lecular orientation. Additional information about such
calculations are given in Ref. (32).

Time-Independent Hamiltonian. Frequency-domain
calculations of the NMR spectrum for the case of a
time-independent Hamiltonian comprise the follow-
ing steps:

1. Obtain the sets of � eigenvalues �u and the
transformation matrix X̂ that diagonalizes the
Hamiltonian (Eq. [19]).

2. Transform the observable and initial density
operator to the eigenbasis of the Hamiltonian:

Ô 3 X̂†ÔX̂ [47]

The matrix elements in the eigenbasis are given
by �u�Ô�v� � (X̂†ÔX̂)uv.

3. Construct a set of �2 amplitudes auv �
�u��̂(0)�v��v�Q̂�u� (Eq. [9]).

4. Calculate the eigenvalue differences �uv for
each pair of eigenstates (Eq. [6]). These corre-
spond to the frequency positions of the peaks in
the spectrum.

5. The spectrum is specified by the set of coordi-
nates {�uv, auv}, u, v � 1, 2, . . . , �.

This algorithm is represented as a detailed flow-
chart in Fig. 4 and implemented in C in Example 3.
The flowchart corresponds to the following events:
First, the components of each spin and spatial tensor
are constructed from the input data, the Hamiltonian
is diagonalized (step 1 above), and the observable and
initial density operators are transformed (step 2).
Then, the program enters two nested loops over each
of the eigenvalue indices u and v. For each pair (u,
v), the following steps are carried out: The amplitude
auv is constructed (step 3) and the eigenvalue differ-
ences �uv are formed (step 4). Because there are �
eigenvalues (in Example 3, � is represented by the
constant n_states), and two nested loops, there are
in principle �2 distinct amplitudes and frequencies.
However, in practice, many of these amplitudes are
zero due to the sparseness of the matrix representa-
tions of the initial density operator and observable
operator. This results in zero values of the products
�u��̂(0)�v��v�Q̂�u� for many transitions. To avoid us-
ing these insignificant spectral peaks, the magnitude
of each amplitude auv is compared with a certain
threshold value (taken as 10
8 in the code in Example
3). If auv is smaller, the frequency–amplitude pair is
rejected; otherwise, each amplitude and frequency is
stored separately in arrays (amp_list and
freq_list, respectively). A counter, n_transi-
tions, is employed to keep track of the number of
“significant amplitudes.”

Repeating the steps above for all �2 pairs of ei-
genstates results in two lists, each of which comprise
n_transitions frequencies �uv and amplitudes
auv, respectively. The resulting spectrum is conse-
quently represented by a “stick spectrum” (histogram)
of delta functions.

Time-Periodic Self-Commuting Hamiltonian. This
section discusses the numerical implementation of the
formal calculations in Part I for generating the fre-
quency-domain spectrum from a spin system evolving
under a time-periodic Hamiltonian, that involves sev-
eral interactions with commuting spin parts.

The calculation of a spectrum containing a mani-
fold of n sidebands (for each pair of Hamiltonian
eigenstates) requires that the rotational period �r is
divided into an even number (n) of time segments.
Then, n � 1 time points are sampled according to Eq.
[39]. The procedure outlined below is a special case
of the COMPUTE method (27) for time-periodic
Hamiltonians, here applied to the situation of several
commuting interactions. The detailed algorithm is il-

COMPUTER SIMULATIONS IN SOLID-STATE NMR. II 15

Figure 4 Flowchart for a frequency-domain calculation (explained in the Time Dependent Ham-
iltonian section) of the NMR spectrum using arbitrary initial density and observable operators and
a time-independent Hamiltonian.

16 EDÉN

lustrated as a flowchart in Fig. 5: Its basic structure is
similar to that of the time-independent calculation in
Fig. 4, but the time-dependent calculations are some-
what more elaborate. The upper left panel of Fig. 5
comprise the following steps:

1. Obtain the transformation matrix X̂.
2. Transform the observable and initial density

operator to the eigenbasis of the Hamiltonian
(Eq. [47]). In most dynamically inhomogeneous
cases, the high-field Hamiltonian commutes
with Îz, which means that it is already diagonal
in the Zeeman basis, and no diagonalization is
necessary. Steps 1 and 2 above may then be
omitted.

Next follows a loop over all interactions, in-
volving steps 3 and 4 below.

3. Calculate the Fourier components ��
(m) of each

interaction � (Eq. [I-105]), and transform the

corresponding spin operator T̂� to the eigenba-
sis of the Hamiltonian.

Then follows the main calculation loop over the
indices u and v, exactly as in the time-indepen-
dent case: The magnitude of each amplitude auv

is checked and, only if it is nonzero, the subse-
quent “inner loops” are executed. These are
shown in the right panel of Fig. 5 and comprise
the following steps.

4. Construct the five Fourier components �u
(m) of

each eigenvalue from Eq. [I-194].
5. Compute the dynamic phases ��uv(tp, 0) for the

n time segments by Eq. [14]. This corresponds
to the loop over p, with each time point tp

obtained from Eq. [39].
6. Obtain the Fourier coefficients cuv

(k) by applying
a discrete Fourier transform (5) (as explained in
Part I) to the set of phases. This is carried out
according to

void getSpectrumStatic(const matrix &Ham, const matrix &rho0, const matrix &Q,
double* freq_list, complex* amp_list,
int &n_transitions)

// frequency-domain calculation for static Hamiltonian
// INPUT: time-indpendent Hamiltonian (Ham), initial density operator (rho0) and observable (Q)
// OUTPUT: lists of frequencies and amplitudes for those transitions having nonzero
// amplitude: in total n_transitions data-points in the stick-spectrum
{
int n_states�Ham.rows();
complex a_uv;
matrix rho0_eigenBasis,Q_eigenBasis,Ham_diag,X,X_adjoint;

diag(Ham,Ham_diag,X); //diagonalize the Hamiltonian
Ham_diag /� (2.*Pi); //convert to units of Hz
X_adjoint�adjoint(X);
rho0_eigenBasis�X_adjoint*rho0*X; //transform density operator to the Hamiltonian eigenbasis
Q_eigenBasis�X_adjoint*Q*X; //transform observable operator to the Hamiltonian eigenbasis

n_transitions�0;
for(int u�0;u�n_states;u��) { //loop over u index
for(int v�0;v�n_states;v��) { //loop over v index
a_uv�(rho0_eigenBasis.get(u,v)*Q_eigenBasis.get(v, u)); //get the amplitude a_uv
if (norm(a_uv)�1e
8) { //place the frequencies and amplitudes
freq_list[n_transitions]�((Ham_diag.get(v,v)).re)
 ((Ham_diag.get(u,u)).re);
amp_list[n_transitions��]�a_uv;
}
} //closes v loop over states
} //closes u loop over states
}

Example 3 Routine getSpectrumStatic for calculating the frequency-domain NMR spec-
trum generated from arbitrary initial density operator (rho0) and observable (Q) and assuming a
time-independent Hamiltonian. The code is implemented according to the flowchart in Fig. 4 and
returns two arrays containing the NMR spectral frequencies and amplitudes, respectively. The array
of amplitudes (amp_list) should be allocated to contain n_states�n_states elements.
Note that only those amplitudes that are larger than a given threshold value (in this case, 10
8) are
retained. The total number of nonzero amplitudes is contained in the parameter n_transitions,
the value of which is returned when exiting getSpectrumStatic.

COMPUTER SIMULATIONS IN SOLID-STATE NMR. II 17

Figure 5 Flowchart for a frequency-domain calculation (explained in the Time Periodic Self-
Commuting Hamiltonian section) of the NMR spectrum using arbitrary initial density and observ-
able operators and a time-periodic self-commuting Hamiltonian.

18 EDÉN

cuv
�k� � n
1 �

p�1

n

exp�i���uv�tp, 0� � 2�pk/n�	;

k �

n

2
� 1,

n

2
� 2,· · ·

n

2
[48]

If n is a power of two, a fast Fourier transform
(FFT) (5) may be used, which improves the
computational speed considerably for large n.

7. For all k �
n/ 2 � 1,
n/ 2 � 2, . . . n/ 2,
calculate the frequency of the kth sideband from
Eq. [17] and the corresponding amplitude auv

(k)

from Eq. [16].

Steps 4–7 are repeated for each pair of Hamilto-
nian eigenstates {�u�, �v�}, giving rise to a nonzero
spectral amplitude auv; the check for this leads to
fairly large savings in the computational time as,
overall, the inner loops comprise the most computer-
intensive calculations.

This algorithm leads to a “stick spectrum” param-
eterized by the following set of frequencies and am-
plitudes:

��uv
�k�, auv

�k�	 � ��uv
�0� � k�r, cuv

�k�auv	,

u, v � 1, 2, . . . , �;

k �

n

2
� 1,

n

2
� 2, · · ·

n

2
[49]

We do not provide the explicit C code for this calcu-
lation here; an implementation for the direct genera-
tion of the powder averaged spectral amplitudes will
be given in the following article.

Because the sideband index k extends over the range
{
n/2 � 1, n/2}, the calculated spectral window is
{[
n/2 � 1]�r , [n/2]�r} or, equivalently in units of Hz,
{[
n/2 � 1](�r /2�), (n/2)(�r /2�)}. It is important to
choose n large enough that the calculated spectral width
covers all sidebands of significant intensity. If n is too
small, the coefficients cuv

(k) obtained in the Fourier trans-
formation procedure will be erroneous. Physically, this
translates into the following: Sidebands having larger
(absolute) frequencies than those covered by the calcu-
lated window will appear as “folded” on top of the
sidebands within the window. The simulated spectrum,
therefore, comes out “missing” the high-frequency side-
bands, as well as having incorrect amplitudes of the
peaks within the window. In practice, convergence is
checked by performing a series of calculations with
increasing n, until the calculated spectra do not change
significantly. A conservative estimate for convergence is
that n should fulfill n � 2�kmax�, where kmax is the highest

order of the spectral sideband of significant intensity
(27).

Note that “folding” may also plague spectra calcu-
lated from the direct method (as well as experimental
spectra) if the time interval � is not chosen small
enough. In this case it is required that � should fulfill
� � �(�r�kmax�)
1.

POSTPROCESSING OF CALCULATED
DATA

The NMR time-domain signal or frequency-domain
spectrum, output of the spin dynamics calculation, is
given as a set of coordinates {tj, s(tj)} or {�j,
aj(�j)}, respectively. These coordinates are subse-
quently stored in a file that can be viewed and plotted.
This section mainly discusses how additional broad-
ening of the spectral peaks may be applied.

The time-domain calculation produces a spectrum
with a frequency resolution given by the inverse of the
time span of the calculation. As for any experimen-
tally acquired spectrum, the frequency resolution may
be increased by “zero filling” the calculated time
signal, i.e., appending signals of zero amplitude prior
to the Fourier transformation. To avoid introducing
distortions of the spectral peaks (showing up as “sinc
wiggles” around each peak center) due to truncation
of the time signal, it is recommended to apodize the
time signal with a decaying function (such that its last
data points are zero) prior to the transformation (15,
17).

The frequency-domain simulation, on the other
hand, outputs a set of “exact” frequencies and ampli-
tudes (within numerical errors and the accuracy of the
spin Hamiltonian model of the physical problem). For
further processing, this set is converted into a discrete
“stick spectrum,” i.e., a histogram of amplitudes. The
frequencies may be given in units of Hz by first
dividing each angular frequency � by 2�: � � �/2�.
The procedure for constructing a stick spectrum with
a given frequency resolution is as follows.

Over a desired “spectral window” �sw � {
�vmax� �
vres, �vmax�}, arrays of frequencies {vj} and amplitudes
{aj} are generated with a suitable frequency resolution

vres � vj � vj
1 � 2�vmax�/m [50]

where m should be an even integer and represents the
number of discrete frequency coordinates. As dis-
cussed on page 124 of Part I, the convention used in
these Concepts articles for the spectral representation
is that the frequency � �vmax� is included in the
window, but not the frequency
 �vmax�. Note that the

COMPUTER SIMULATIONS IN SOLID-STATE NMR. II 19

spectral window is the frequency span of the NMR
spectrum and plays the same role as the parameter �samp

of Part I. However, the value of �sw is chosen arbitrarily
(and may be decided after the frequency-domain simu-
lation is finished), while �samp is linked to the parame-
ters �acq and �dwell, which are decided prior to the ex-
perimental signal acquisition (or, alternatively, at the
start of the direct time-domain simulation). The value of
the jth frequency coordinate within �sw is given by

vj �
�vmax� � jvres, j � 1, 2,· · · , m [51]

Now, we need need to construct the histogram of
amplitudes. Initially, all amplitudes aj are set to zero,

where aj is at the jth frequency coordinate. The dis-
crete set {�uv/ 2�, auv} is then mapped onto �sw as
follows: The value auv is added to aj at the frequency
coordinate �j closest to �uv/ 2�. The index j may be
calculated from

j � � �uv

2�vres
� � m/2 [52]

where the function [x] returns the nearest integer to x.
This procedure is repeated for all members of the set
{�uv /2�, auv}. In C, this may be programmed as
follows:

#define sign(x) ((x�0) ?
1:1) //return the sign of x
void CreateStickSpectrum(double� freq_in, complex� amp_in,int n_in,

double� freq_out, complex� amp_out,int n_out,double sw)
//INPUT: lists of frequencies and amplitudes (assumed to be complex numbers); both of dimension n_in
//OUTPUT: the amplitudes sorted into “bins”, i.e. a stick-spectrum {n_out frequencies and
// amplitudes} extending over the spectral window ’sw’ with a frequency resolution sw/n_out
{
int i,m;
double freq,res�sw/double(n_out); //define the frequency resolution

for(i�0; i�n_out; i��) {
freq_out[i]� ((
sw/2)�((i�1)�res)); //generate the output frequencies
amp_out[i]�complex(0.,0.); //start with an empty array of amplitudes
}

for(i�0; i�n_in; i��) {
//get the value of m, using that int(x) returns the integer part of x.
//next, place the i:th amplitude from the input list at th m:th position of amp_out
m�int(freq_in[i]/res�(sign(freq_in[i])�0.5))�n_out/2
1;
amp_out[m] �� amp_in[i]; //update the array of amplitudes

}
}

Note that the computer implementation employs
array indexing starting from zero (see above); hence,
the value of m is one less than that given in Eq. [52].

Broadening of the spectral peaks may now conve-
niently be introduced by first converting this stick
spectrum into a time-domain signal by an inverse
Fourier transform. Next, the time-domain signal is

apodized with an appropriate decaying function, for
example, an exponential decay. Finally, another Fou-
rier transform produces the line broadened frequency-
domain spectrum. The shape of the spectral peaks
depends on the form of the decaying function being
used. The procedure is illustrated in Fig. 6 and im-
plemented numerically as follows:

void lineBroaden(complex �list,double width,int n_points, double dwell,int function_flag)
// INPUT: list of spectral amplitudes
// OUTPUT: real part of spectrum; the FWHH of the line is is (width) Hz, with
// (function_flag�0/1) giving Lorentzian and Gaussian shape, respectively
{
IFFT(list,n_points); //inverse FT; transform to time-domain
for(int i�0;i�n_points;i��) //apply decaying function
if (function_flag)
list[i] � exp(
sqr(Pi�width�i�dwell)/4.�log(2.)))�list[i]; //Gaussian decay
else
list[i] � exp(
Pi�width�i�dwell)�list[i]; //exponential decay

FFT(list,n_points,1); //transform back to the f-domain
}

20 EDÉN

The routines FFT and IFFT carries out the direct
and inverse FFTs, respectively. They are based on the
routines in Ref. (5) and their explicit computer codes
are given in Ref. (23).

SUMMARY AND DISCUSSION

Computational Efficiency

We implemented the algorithms for spin dynamics
calculations outlined in Part I. The code here was not
optimized for speed but designed so as to be straight-
forward and transparent. A general discussion on is-
sues such as implementation of more efficient simu-
lation algorithms may be found in Ref. (32), and we
also refer to the literature for fast algorithms for the
special case of periodic Hamiltonians (26–32). Here,
we limit ourselves to briefly commenting on the rel-
ative computational efficiencies of the frequency-do-
main simulation and the direct method. In their cur-
rent versions, the frequency-domain approach is much
more efficient and in some cases many orders of
magnitude faster than the direct method. However, as
discussed in Ref. (32), it is feasible to carry out
simulations in the time domain employing the eigen-
basis of the Hamiltonian as in the frequency-domain
calculations, thereby giving the two methods roughly
equal efficiencies.

Extensions to More Complicated Problems

The dynamically inhomogeneous cases (2) primar-
ily considered in this article are important from an
NMR application standpoint because they comprise
many applications where NMR interaction param-
eters may be determined from spectral sideband
analysis combined with numerical fitting tech-
niques. However, they comprise only a minor class
of all potential scenarios. For example, simulations
of strongly coupled homonuclear spins, or experi-
ments involving RF fields during the signal acqui-
sition, require modifications of the computer algo-
rithms presented here. This applies especially to
cases where both the spatial parts and the spin parts
of the Hamiltonian are time dependent. Sample
rotation is used to modulate the spatial tensors. In
addition, time-dependent RF fields render the spin
operators time dependent. This is exploited for sup-
pressing certain spin interactions while retaining
others and used, for example, in spin decoupling
problems (14 –18). Such spin systems evolve under
dynamically homogeneous Hamiltonians. Below,
we briefly outline some of the additional consider-
ations required when simulating such cases. The
various scenarios may roughly be classified as fol-
lows:

1. RF fields applied to a static sample. Assume
that a sequence of RF pulses is applied to the
spins but the sample remains static. In this case,
only the spin part of the Hamiltonian is time
dependent. The expression for the RF Hamilto-
nian for a pulse of constant RF phase and am-
plitude is given by Eq. [I-138]: If the amplitude
and phase is constant during each pulse (but
may be varied between the pulses), the rotating
frame RF Hamiltonian is piece-wise time inde-
pendent, i.e., takes the form of a step function.
The propagators needed when numerically cal-
culating the spin dynamics of such experiments
may be obtained by applying Eq. [34] to the
Hamiltonian of each pulse. Next, the accumu-
lated propagator over the entire pulse sequence
is constructed from a time-ordered product (Eq.
[38]) of the propagators for the pulses. The time
signal is finally calculated by propagating the
density operator according to the recipe of the
direct method (section 5.5).

2. Rotating solid in the absence of RF fields. In
this case, the Hamiltonian is periodically mod-
ulated exactly as for the dynamically inhomo-
geneous cases, with the additional complication
that it is no longer self-commuting. This re-

Figure 6 Procedure for introducing line broadening to a
stick spectrum, shown in (a). The time signal (b) is obtained
by applying an inverse Fourier transform. It is subsequently
multiplied with an exponentially decaying function (c). The
line-broadened spectrum with Lorentzian peak shapes is
obtained after Fourier transformation, shown in (d).

COMPUTER SIMULATIONS IN SOLID-STATE NMR. II 21

quires dividing the rotational period into small
segments and applying Eq. [34] to the Hamil-
tonian at t � tmid of each segment, as discussed
above.

3. Rotating solid in the presence of RF fields. This
is a superposition of cases 1 and 2. The major
difficulty here is to find a suitable way to divide
the time interval of the experiment into small
time segments during each of which the Ham-
iltonian may be approximated as piece-wise
time independent. Once this is done, the calcu-
lation follows the standard recipe of the direct
method.

Of course, there also exist a large number of
experiments requiring more extensive computa-
tional algorithms, such as simulations of multidi-
mensional experiments or problems involving
chemical exchange or relaxation. These are outside
the scope of this article, and we refer to Ref. (32)
for more information about writing code for such
simulations.

This article only involved calculations of NMR
responses from a single crystal under static and MAS
conditions. The simulations of spectra of powders,
i.e., a collection of many single crystals, will be
treated in the following paper, where explicit com-
puter code for complete programs based on the rou-
tines provided in this article will be given.

ACKNOWLEDGMENTS

I would like to thank L. Frydman, C.V. Grant, A.
Sebald, and S. Vega for helpful comments on the
manuscript and M.H. Levitt for many discussions and
for providing Mathematica routines used for generat-
ing some of the figures. A postdoctoral fellowship
from The Swedish Foundation for International Co-
operation in Research and Higher Education (STINT)
is appreciated.

REFERENCES

1. Edén M. 2003 Computer simulations in solid state
NMR: Part I. Spin dynamics theory. Concepts Magn
Reson Part A 17A:117–154.

2. Maricq MM, Waugh JS. NMR in rotating solids.
J Chem Phys 1979; 70:3300–3316.

3. Ellis TMR, Philips IR, Lahey TM. Fortran 90 Program-
ming. New York: Addison-Wesley; 1994.

4. Schildt H. C: The Complete Reference. Berkeley, CA:
Osborne McGraw-Hill; 1995.

5. Press WH, Flannery BP, Teukolsky SA, Vetterling VT.
Numerical Recipies in C. The Art of Scientific Com-
puting. Cambridge, UK: Cambridge University Press;
1986.

6. Stroustrup B. The C�� Programming Language. New
York: Addison-Wesley; 1991.

7. Matlab. Natick, MA: The Mathworks, Inc. (2003).
8. Alderman DW, Solum MS, Grant DM. Methods for

analyzing spectroscopic line shapes. NMR solid pow-
der patterns. J Chem Phys 1986; 84:3717–3725.

9. Wang D, Hanson GR. A new method for simulting
randomly oriented powder spectra in magnetic reso-
nance: The Sydney Opera House (SOPHE) method. J
Magn Reson A 1995; 117:1–8.

10. Mombourquette MJ, Weil JA. Simulation of magnetic
resonance powder spectra. J Magn Reson 1992; 99:37–
44.

11. Bak M, Nielsen NC. REPULSION—A novel approach
to efficient powder averaging in solid-state NMR. J
Magn Reson 1997; 125:132–139.

12. Edén M, Levitt MH. Computation of orientational av-
erages in solid-state NMR by Gaussian spherical
quadrature. J Magn Reson 1998; 132:220–239.

13. Ponti A. Simulation of magnetic resonance static pow-
der lineshapes: A quantitative assessment of spherical
codes. J Magn Reson 1999; 138:288–297.

14. Haeberlen U. High Resolution NMR in Solids. Selec-
tive Averaging. New York: Academic Press; 1976.

15. Ernst RR, Bodenhausen G, Wokaun A. Principles of
Nuclear Magnetic Resonance in One and Two Dimen-
sions. Oxford, UK: Clarendon Press; 1987.

16. Munowitz M. Coherence and NMR. New York: Wiley;
1988.

17. Schmidt-Rohr K, Spiess HW. Multidimensional Solid-
State NMR and Polymers. New York: Academic; 1994.

18. Mehring M, Weberuß VA. Object-Oriented Magnetic
Resonance. Classes and Objects, Calculations and
Computations. London: Academic Press; 2001.

19. Levitt MH. Spin Dynamics. Basics of Nuclear Mag-
netic Resonance. Chichester, UK: Wiley; 2001.

20. http://www.gnu.org.
21. Smith SA, Levante TO, Meier BH, Ernst RR. Computer

simulations in magnetic resonance. An object-oriented
programming approach. J Magn Reson A 1994; 106:
75–105.

22. GAMMA program. Florida State University, Tallahas-
see, FL. http://gamma.magnet.fsu.edu.

23. http://www.fos.su.se/physical/mattias.
24. Slichter CP. Principles of Magnetic Resonance. New

York: Springer-Verlag; 1990.
25. Salzman WR. Quantum mechanics of systems periodic

in time. Phys Rev A 1974; 10:461–465.
26. Kubo A, Imashiro F, Terao T. Fine structures of 1H-

coupled 13C MAS NMR spectra for uniaxially rotating
molecules in deuterated surroundings: Conformations
of n-alkane molecules enclathrated in urea channels. J
Phys Chem 1996; 100:10854–10860.

27. Edén M, Lee YK, Levitt MH. Efficient simulation of

22 EDÉN

periodic problems in NMR. Application to decoupling
and rotational resonance. J Magn Reson A 1996; 120:
56–71.

28. Charpentier T, Fermon C, Virlet J. Efficient time prop-
agation technique for MAS NMR simulation: Applica-
tion to quadrupolar nuclei. J Magn Reson 1998; 132:
181–190.

29. Charpentier T, Fermon C, Virlet J. Numerical and the-
oretical analysis of multiquantum magic-angle-spin-
ning experiments. J Chem Phys 1998; 109:3116–3130.

30. Levitt MH, Edén M. Numerical simulation of periodic
NMR problems: Fast calculation of carousel averages.
Mol Phys 1998; 95:879–890.

31. Hohwy M, Bildsøe H, Jakobsen HJ, Nielsen NC. Effi-
cient spectral simulations in NMR of rotating solids.
The �-COMPUTE algorithm. J Magn Reson 1999; 136:
6–14.

32. Hodgkinson P, Emsley L. Numerical simulation of sol-
id-state NMR experiments. Progr NMR Spectrosc
2000; 36:201–239.

33. Banwell CN, Primas H. On the analysis of high-reso-
lution nuclear magnetic resonance spectra. I. Methods
of calculating NMR spectra. Mol Phys 1962; 6:225–256.

BIOGRAPHY

Mattias Edén was born in 1971 in Stock-
holm, Sweden. He received his B.S. in chem-
istry from Stockholm University in 1994 and
continued there with doctoral studies in the
group of Malcolm H. Levitt. Their work pri-
marily involved pulse sequence design for
determining molecular structures by solid-
state NMR, as well as the development of
methods for numerically simulating NMR

experiments. He did postdoctoral work in the field of solid-state
NMR on quadrupolar nuclei with Lucio Frydman at the University
of Illinois at Chicago (2000) and at the Weizmann Institute of
Science in Israel (2001). Currently, Dr. Edén is an assistant professor
at Stockholm University, focusing on solid-state NMR methodology
development for structural investigations of inorganic materials.

COMPUTER SIMULATIONS IN SOLID-STATE NMR. II 23

